skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hu, Yidan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Local Differential Privacy (LDP) has been widely recognized as a powerful tool for providing a strong theoretical guarantee of data privacy to data contributors against an untrusted data collector. Under a typical LDP scheme, each data contributor independently randomly perturbs their data before submitting them to the data collector, which in turn infers valuable statistics about the original data from received perturbed data. Common to existing LDP mechanisms is an inherent trade-off between the level of privacy protection and data utility in the sense that strong data privacy often comes at the cost of reduced data utility. Frequency estimation based on Randomized Response (RR) is a fundamental building block of many LDP mechanisms. In this paper, we propose a novel Joint Randomized Response (JRR) mechanism based on correlated data perturbations to achieve locally differentially private frequency estimation. JRR divides data contributors into disjoint groups of two members and lets those in the same group jointly perturb their binary data to improve frequency-estimation accuracy and achieve the same level of data privacy by hiding the group membership information in contrast to the classical RR mechanism. Theoretical analysis and detailed simulation studies using both real and synthetic datasets show that JRR achieves the same level of data privacy as the classical RR mechanism while improving the frequency-estimation accuracy in the overwhelming majority of the cases by up to two orders of magnitude. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Abstract This paper aims to present a potential cybersecurity risk existing in mixed reality (MR)-based smart manufacturing applications that decipher digital passwords through a single RGB camera to capture the user’s mid-air gestures. We first created a test bed, which is an MR-based smart factory management system consisting of mid-air gesture-based user interfaces (UIs) on a video see-through MR head-mounted display. To interact with UIs and input information, the user’s hand movements and gestures are tracked by the MR system. We setup the experiment to be the estimation of the password input by users through mid-air hand gestures on a virtual numeric keypad. To achieve this goal, we developed a lightweight machine learning-based hand position tracking and gesture recognition method. This method takes either video streaming or recorded video clips (taken by a single RGB camera in front of the user) as input, where the videos record the users’ hand movements and gestures but not the virtual UIs. With the assumption of the known size, position, and layout of the keypad, the machine learning method estimates the password through hand gesture recognition and finger position detection. The evaluation result indicates the effectiveness of the proposed method, with a high accuracy of 97.03%, 94.06%, and 83.83% for 2-digit, 4-digit, and 6-digit passwords, respectively, using real-time video streaming as input with known length condition. Under the unknown length condition, the proposed method reaches 85.50%, 76.15%, and 77.89% accuracy for 2-digit, 4-digit, and 6-digit passwords, respectively. 
    more » « less
  3. Free, publicly-accessible full text available August 4, 2026
  4. Indoor navigation is necessary for users to explore large unfamiliar indoor environments such as airports, shopping malls, and hospital complex, which relies on the capability of continuously tracking a user's location. A typical indoor navigation system is built on top of a suitable Indoor Positioning System (IPS) and requires the user to periodically submit location queries to learn their whereabouts whereby to provide update-to-date navigation information. Received signal strength (RSS)-based IPSes are considered as one of the most classical IPSes, which locates a user by comparing the user's RSS measurement with the fingerprints collected at different locations in advance. Despite its significant advantages, existing RSS-IPSes suffer from two key challenges, the ambiguity of RSS fingerprints and device diversity, that may greatly reduce its positioning accuracy. In this paper, we introduce the design and evaluation of CITS, a novel RSS-based continuous indoor tracking system that can effectively cope with fingerprint ambiguity and device diversity via differential RSS fingerprint matching. Detailed experiment studies confirm the significant advantages of CITS over prior RSS-based solutions. 
    more » « less
  5. null (Ed.)